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Abstract

In the high-eccentricity migration (HEM) scenario, close-in planets reach the vicinity of the central star on high-
eccentricity orbits that become circularized—with a concomitant decrease in the semimajor axis—through a tidal
interaction with the star. Giant planets that arrive with periastron distances that are smaller than the Roche limit aR
lose their gaseous envelopes, resulting in an inner edge to the surviving planets’ distribution. The observational
evidence for this effect, while extensive, is nonetheless somewhat ambiguous because of the effect of tidal orbital
decay. Here, we consider another key prediction of the HEM scenario—the existence of a spatial eccentricity
gradient near the location where the circularization time becomes comparable to the planet’s age for typical
parameters. Previous studies have already found evidence for this gradient and demonstrated that its properties are
consistent with the circularization process being dominated by tidal dissipation in the planet (encapsulated by the
tidal quality factor Qp¢). Our work extends these treatments by constructing explicit model distributions for
comparison with the data and by carrying out backward-in-time integrations using observed system parameters.
We show that circularization generally occurs outside the distribution’s inner edge (which defines the boundary of
the so-called sub-Jovian desert) and that typically Q 10p

6¢ » in the circularization zone (to within a factor of 3). We
also find tentative evidence for an eccentricity gradient in lower-mass planets, indicating that formation through
HEM may be relevant down to Neptune scales.
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1. Introduction

The growing number of observed close-in exoplanets
(planets with orbital periods P 10orb  days) has motivated
researchers to look for trends in the distribution of their
physical and orbital parameters that might help clarify the
origin of these planets and the nature of their interaction with
the host star. In an early study of this type, Pont et al. (2011,
hereafter PHMF11) drew attention to two such trends for giant
planets: the prevalence of circular orbits for very short periods,
and the inverse correlation between the planet’s mass Mp and
Porb for the closest planets. Under the prevailing view, wherein
giant planets form beyond the water–ice line, the first of these
trends has two distinct potential interpretations: in the disk
migration scenario, the observed planets reach the central star
by drifting inward through the protoplanetary disk on nearly
circular orbits (e.g., Lin et al. 1996), whereas in the high-
eccentricity migration (HEM) picture they arrive on high-
eccentricity orbits that become tidally circularized when the
planets approach the star (e.g., Rasio & Ford 1996). In this
connection, PHMF11 identified an unambiguous transition
from eccentric to circular orbits when going from long to short
orbital periods (for a given value of Mp) and from high-mass to
low-mass planets (for a given value of Porb), and pointed out
that this behavior is consistent with the expected outcome of a
circularization process that is dominated by tidal dissipation in
the planet (see also Husnoo et al. 2012). These results were
confirmed in a recent study by Bonomo et al. (2017).

In trying to interpret the second identified trend—the pile-up
of the shortest-period planets in such a way that those with
higher values of Mp have lower values of Porb—PHMF11
speculated that tidal circularization and the stopping mech-
anism of close-in planets might be related. However, this

mass–period relation was subsequently recognized to be part of
a more general feature in the Porb–Mp plane: a nearly empty
area, outlined roughly by two oppositely sloped lines, in the
region of sub-Jupiter-mass planets on short-period orbits (e.g.,
Szabó & Kiss 2011; Beaugé & Nesvorný 2013; Mazeh
et al. 2016). Matsakos & Königl (2016, hereafter MK16)
showed that this feature (dubbed the sub-Jovian desert) can be
interpreted in terms of HEM, with the two distinct segments of
the desert’s boundary reflecting the different slopes of the
empirical mass–radius relation for small and large planets (e.g.,
Weiss et al. 2013). A plausible physical origin for the boundary
is the Roche limit aR, the distance from the star where the
planet starts to be tidally disrupted. If the planet arrives on
an orbit with initial (subscript 0) semimajor axis a0 and
eccentricity e0, its distance of closest approach will be
a e a1per,0 0 0= -( ) and it will circularize (assuming conserva-
tion of orbital angular momentum) at a e a1cir 0 per,0= +( ) (i.e.,
at a2 per,0 for a highly eccentric orbit; Rasio & Ford 1996).
The upper boundary of the sub-Jovian desert was already
interpreted in this way by Ford & Rasio (2006), although the
data available at the time were insufficient for a definitive
model fit.3 The high-e0 orbit could originate in a sudden
planet–planet scattering event or in a slower interaction such as
Kozai migration (involving either a stellar or a planetary
companion) or secular chaos. In the latter case, Wu & Lithwick
(2011) suggested that the planet’s inward drift might be
arrested at the location where the rate at which its longitude of
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3 As was pointed out by MK16, the observed shape of the desert’s upper
boundary is not adequately reproduced unless one also takes into account the
tidal dissipation in the star, which, on a timescale much longer than the
circularization time, causes the planet’s orbit to decay. In a previous study,
Valsecchi & Rasio (2014) interpreted the finding of giant planets with
semimajor axes a2 R< in terms of orbital decay of this type.
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pericenter precesses due to a secular interaction with a more
distant planet being equal to the orbit-averaged precession rate
associated with the tidal quadrupole induced on the planet by
the star. The locus of circularization radii in the Porb–Mp plane
is, however, similar in this case to that obtained by setting
a aper,0 R= . Note that the planet’s stopping mechanism is not
directly related to the circularization process in either of these
two explanations of the pile-up. However, in order for the data
to be compatible with the prediction a a2cir per,0» , the
circularization radius rcir (obtained by equating the planet’s
circularization time to the time that has elapsed since its arrival
at the stellar vicinity) must exceed acir. As we demonstrate in
Section 3, this condition is typically satisfied for planets in the
pile-up zone.

The observational support for the role of the HEM mechanism
in shaping the spatial distribution of close-in planets has so far
been based primarily on the apparent paucity of planets with
semimajor axes a a2 R (e.g., Rasio & Ford 1996; Matsumura
et al. 2010; Valsecchi & Rasio 2014) and on the corresponding
dearth (the sub-Jovian desert) in the period–mass plane (Ford &
Rasio 2006; MK16). While the observational evidence for this
effect is strong, it is not entirely unambiguous on account of the
(already noted) additional orbital evolution induced by tidal
dissipation in the star. In this paper we consider a complementary
observational test of this scenario, the expected gradient in planet
eccentricities in the vicinity of the locus of the circularization radii
in the period–mass plane. The existence of such a gradient was
already demonstrated in PHMF11, but here, in addition to
updating the database, we compare it explicitly with the
predictions of the HEM model. We describe our modeling
approach in Section 2, present results in Section 3, discuss the
main implications in Section 4, and summarize in Section 5. In a
separate paper (Königl et al. 2017, hereafter KGM17), we use the
model employed in this work to study the fate of high-mass
planets that arrive by HEM and end up crossing the Roche limit,
which results in the loss of their gaseous envelopes: we argue that
the remnant rocky cores of these planets can plausibly account for
the recently identified population of dynamically isolated hot
Earths (Steffen & Coughlin 2016).

2. Modeling Approach

Our treatment is based on the formulation presented
in MK16, whose work was similarly concerned with the
properties of close-in planets that arrive by HEM and undergo
orbital circularization through internal tidal dissipation. That
paper examined the shape of the boundary of the sub-Jovian
desert in the Porb–Mp plane under the assumption that planets
reach the vicinity of the Roche limit aR (or, alternatively, the
point of closest approach in the secular-chaos model of Wu &
Lithwick 2011) with e 10 » and that their orbits then undergo
an effectively instantaneous circularization. In contrast with
that work, in which only the post-circularization orbital
evolution of planets due to tidal dissipation in the star was
calculated, in this paper we also account explicitly for tidal
dissipation in the planets and we consider its effect on orbital
circularization for a range of initial eccentricities and without
assuming a priori that this process always runs to completion.
We carry out Monte Carlo simulations using the same
distributions of Porb,0, Rp, Mp, and tarr (the planet arrival time
at the stellar vicinity) as in MK16, but we update their choices
for the distributions of radii and masses of large planets as well

as of tage (the system’s age) using data downloaded from the
Extrasolar Planets Encyclopedia database at exoplanet.eu.
Any given system is specified by six parameters: Porb,0, e0,

Rp, Mp, tage, and tarr. We assume that the planets that reach
the stellar vicinity by HEM originate in the Porb,0 range
[10, 100] days with e0 in the range [0.5, 0.9]. Though
consistent with our current understanding of how the HEM
process operates in real systems (e.g., Dawson et al. 2015;
Petrovich & Tremaine 2016), these ranges are not meant to
represent any particular physical model and are chosen for
illustrative purposes only. For Porb,0 we adopt the empirical
distribution f P Plog orb,0 orb,0

0.47¶ ¶ µ given in Youdin (2011),
whereas for the e0 distribution we adopt the form

f e constant0¶ ¶ = (which corresponds to the steady-state
distribution obtained by Petrovich & Tremaine 2016 and
Antonini et al. 2016 for planets that undergo eccentricity
oscillations due to secular gravitational interactions with an
outer companion, as well as to the “coplanar” distribution
obtained in the secular-chaos model and shown in Figure 4 of
Wu & Lithwick 2011).4 The values of Rp are also sampled
from an empirical distribution given in Youdin (2011),

f R Rlog p p
0.66¶ ¶ µ - . As in MK16, we distinguish between

small and large planets, separated at R R12p = Å. For the small
planets we adopt

M
R

R
M R R, 12 1p

p
2

p= <
Å

Å Å
⎛
⎝⎜

⎞
⎠⎟ ( )

(see Weiss et al. 2013). In the case of the large planets—for
which Rp is nearly independent of Mp—we resample Rp from
the interval [9, 20] RÅ and independently sample Mp from the
interval [0.3, 10]MJ using the exoplanet.eu database (see the
Appendix; note that this was done in MK16 using the data
originally compiled by Weiss et al. 2013).5 In another
modification of the MK16 implementation, we replace the
age distribution given in Walkowicz & Basri (2013)—which
was determined by applying gyrochronology relationships to
comparatively rapidly rotating stars and is therefore biased
toward young systems—with an empirical distribution obtained
from exoplanet.eu. We restrict attention to the Porb interval of
[2.5, 7] days (where the upper bound defines the regime of hot
Jupiters and the lower limit roughly corresponds to the distance
from the star below which the effect of tidal orbital decay
becomes significant) and consider separately the age distribu-
tions for small and large planets (see the Appendix). Finally,
we assume a uniform distribution in tlog arr for the arrival times,
with tarr ä [0.01, 10]Gyr (see MK16).
After sampling for Porb,0 and e0, one can determine a a e,per,0 0 0( )

and a a e,cir 0 0( ) (setting a GM P 40 orb,0
2 2 1 3

* p= ( ) , where G is the
gravitational constant andM* is the stellar mass). These values can
in turn be used to select the systems that are relevant to the present
calculation. In this work we only consider the Roche-limit

4 The results presented in this paper are not sensitive to the details of the Porb,0
and e0 distributions. However, in KGM17 we examine the dependence of the
fraction of planets that end up crossing the Roche limit on the form of the e0
distribution and on the maximum value of e0.
5 The radii of giant planets evidently depend on the incident flux from the
host star (e.g., Laughlin et al. 2011) and could thus vary systematically with
orbital period. We do not explicitly account for this dependence since it was
found to be fairly weak (e.g., Weiss et al. 2013) and because the orbital
circularization zone that we investigate corresponds to a rather narrow range of
Porb values.
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interpretation of the sub-Jovian desert boundary, taking the lower
bound on a planet’s initial periastron distance to be given by

a q M M R

q M

M
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M

R
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(where the normalization of the coefficient q is based on the
results of MK16). The systems whose evolutions we follow are
defined by the requirements a aper,0 R> and P a 7orb cir ( )
days. We simplify the evolution equations by assuming that the
orbital angular momentum vector is aligned with the spin
vector of the star as well as with that of the planet, and that the
planet’s rotation period does not change with time (corresp-
onding to pseudosynchronicity). We also neglect the time
variation of the stellar rotation period P* (which we assume to
be distributed uniformly in the interval [5, 10] days). The
evolution equations are then given by

da

dt Q
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de

dt Q

GM

a

M

M

R

a
e e

f e f e

f e
f e

Q

GM

a

M

M

R

a
e e

f e
P

P
e f e

81

2
1

11

18

81

2
1

11

18
1 4

p
3

1 2

p

p
5

5
2 13 2

4
2

2
2

5
2 3

2

3

1 2
p

5

5
2 13 2

4
2 orb 2 3 2

3
2

* *

*

*

*
*

*

=
¢

-

´ -

+
¢

-

´ - -

-

-

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

( )

( ) ( )
( )

( )

( )

( ) ( ) ( ) ( )

(e.g., Matsumura et al. 2010), where the eccentricity functions
f1, . . ., f5 (each of which equals 1 at e= 0) are given in Hut
(1981), Qp¢ and Q

*
¢ are, respectively, the (modified) planetary

and stellar tidal quality factors, and R* is the stellar radius. We
express both Qp¢ and Q

*
¢ in the form Q Q P P1 orb 1¢ = ¢( ), which

was employed in previous studies as a representation of
equilibrium tides in the weak-friction approximation (e.g.,
Eggleton et al. 1998; Fabrycky et al. 2007; Matsumura
et al. 2010).6 We set P 41 = days and adopt Q 101

6
*
¢ = .7 We

use the results presented in Section 3 to constrain the value
of Qp1¢ .
For the values of e0 that we consider, e1 0

2-( ) is not 1 and
one can define a characteristic orbital circularization time by

e de dt1cir
1t º -∣( ) ∣ . We estimate cirt from the first term on

the right side of Equation (4) by taking the limit e 0 and
identifying a with rcir. By equating cirt to tage, we obtain an
expression for the locus of the circularization radii of planets
with the given age in the period–mass plane:8
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We express Rp in Equation (5) as a function of Mp using the
relationship given in Equation (1) for M M150p < Å and by
approximating its behavior for more massive planets by
R constantp = . This implies that the Porb,cir curve in the period–

mass plane changes from having a positive slope ( Mp
9 32µ ) for

M M150p < Å to having a negative slope ( Mp
3 16µ - ) for larger

masses.9 As was pointed out by MK16, an analogous behavior is
found for the immediate-post-circularization boundary of the sub-
Jovian desert Porb,RL (identified as the orbital period that
corresponds to a a e a1cir R 0 R= +( ) ( ) )using the above functional
form of R Mp p( ) in Equation (2): P Morb,RL p

1 4µ and Mp
1 2µ - for

M M150p < Å and M150> Å, respectively.
One can similarly obtain the orbital decay isochrones by

considering the dominant (second) term on the right side of
Equation (3). For the assumed dependence of Q

*
¢ on Porb, that

term is ∝a−7, so we define the orbital decay time as
a da dt8d

1t º -∣( ) ∣ (cf. Barker & Ogilvie 2009). This yields
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In all numerical evaluations of this expression we assume, for
simplicity, that P P 1 1orb

3 16
* - »[( ) ] .

3. Results

Our Monte Carlo simulations each involve 30,000 samplings
of planetary systems with a solar-type host (R R* = ☉,
M M* = ☉). As the Rp distribution that we employ was
corrected for observational selection effects and is dominated
by small planets, we randomly reduce the number of small
(R R12p < Å) model planets that we exhibit by 90% to improve
the presentation. The top panel of Figure 1 shows the calculated
planet distribution in the Porb–Mp plane, color-coded according

6 Q
*
¢ is probably better modeled in terms of a dynamical tide, but such models

also infer a power-law dependence on Porb with a positive (albeit 1> ) index in
both the weakly and the strongly nonlinear regimes (e.g., Barker &
Ogilvie 2010; Barker 2011; Essick & Weinberg 2016). In this paper we are
primarily interested in the behavior of Qp¢, which underlies the orbital
circularization process.
7 Note in this connection that MK16 treated Q

*
¢ as a spatial constant equal

to106.

8 More precisely, one should consider the locus of the circularization radii of
planets with a given (nonnegative) value of t tage arr-( ). However, for the
chosen distributions of ages and arrival times, the distribution of the
nonnegative values of t tage arr-( ) closely approximates that of tage.
9 If Qp¢ were instead a spatial constant, as is sometimes assumed, then the
listed scalings of Porb,cir would change to Mp

9 26µ and Mp
3 13µ - for

(respectively) small and large masses.

3

The Astronomical Journal, 154:192 (10pp), 2017 November Giacalone, Matsakos, & Königl



to the value of the orbital eccentricity at the end of the modeled
evolution. For this panel, we adopt Q 10p1

6¢ = . We also plot the
circularization isochrones (Equation (5)) for two values of
tage—1 and5 Gyr (solid and dashed blue lines, respectively)—
which mark off the range from which most of the system ages
are drawn (see Figure 6). It is seen that these curves capture the
numerical results in that the region between them corresponds
to the transition zone in the period–mass plane that separates
mostly eccentric orbits (to the right of the dashed curve) from
mostly circular orbits (to the left of the solid curve). In addition,

we plot the immediate-post-circularization desert boundary
curves (P Morb,RL p( )) for the two values of e0 (0.5 and 0.9) that
bracket our adopted range of initial eccentricities. These lines
are seen to lie to the left of the circularization isochrones and
are well within the region of mostly circularized orbits,
corroborating the assumption that the planets near the desert
boundary satisfy r e a1cir 0 R> +( ) (see Section 1). Finally, we
plot the orbital decay isochrones (Equation (6)) for the same
two values of tage (solid and dashed red lines, respectively).
These lines pass near the vertices of the P Morb,RL p( ) curves,

Figure 1. Predicted and observed planet distributions in the Porb–Mp plane for circularization models that correspond to three values of the coefficient in the adopted
expression for the planetary tidal quality factor Q Q P 4 daysp p1 orb¢ = ¢ ( ). The top panel (Q 10p1

6¢ = ) displays the results of the Monte Carlo simulations as dots without
taking into account observational selection effects that could affect the model planets’ detectability. The data points, obtained from exoplanet.eu, are shown in this
panel as either triangles (82 systems) or stars (63 systems) depending on whether or not the listed uncertainty ed in the value of the eccentricity is low
( e emax 0.05, 0.5d < ( )). Both the model points and the data points are color-coded according to the value of e. The blue curves represent circularization isochrones,
with the solid and dashed lines—which correspond to two representative values of tage—serving to delineate the rough extent of the circularization zone. The red solid
and dashed lines represent orbital decay isochrones for the same two values of tage. The top panel also displays the immediate-post-circularization model boundaries of
the sub-Jovian desert for the two bracketing values of the adopted distribution of initial eccentricities (dotted and dashed–dotted curves). The bottom panels
(Q 3 10p1

5¢ = ´ and Q 3 10p1
6¢ = ´ ) only display systems with reliable eccentricity measurements that lie to the right of the 1 Gyr orbital decay isochrone and are

thus unlikely to have experienced significant orbital decay (49 data points). See the text for further details.
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indicating that orbital decay is likely to affect the shape of the
upper desert boundary (see MK16). However, the orbital decay
isochrones intersect the circularization isochrones at a suffi-
ciently large value of Mp ( M2 J ) to insure that most of the
modeled planets are not measurably affected by orbital decay
during the circularization process.10

The top panel of Figure 1 also exhibits observational data
points from the exoplanet.eu compilation. They are shown as
either triangles or stars and are color-coded in the same way as the
model dots. We only include planets with measured eccentricities
that are listed with error values (generally both an upper and a
lower one). For a data point to be considered reliable, we require
that both of the associated values of ed be e0.5 max 0.1, ;< ( ) 11

we represent such a data point by a triangle. If either one of the
values of ed does not satisfy the above inequality, we consider the
associated data point to be questionable and display it as a star.
These data points can be used to check a key prediction of the
“HEM + circularization” scenario—the presence of an eccen-
tricity gradient in the vicinity of the plotted circularization
isochrones. Although the number of reliable data points in this
region of the period–mass plane is relatively small, the predicted
gradient is uniquely specified to point along the normal to these
sloping lines, which should facilitate the test. A visual inspection
of the top panel does indeed indicate consistency with this
prediction, not just for the upper portions of the isochrone curves
that were considered in PHMF11 but possibly also for the
differently oriented lower branches of these curves. The additional
data accumulated since the PHMF11 work was carried out also
make it possible to resolve the gradient on smaller scales in the
period–mass plane and therefore to localize it better in relation to
the isochrone curves.

The location of the circularization radius depends on the
magnitude of the planetary tidal quality factor: it shifts to lower
values of Porb as Qp¢ is increased. In an attempt to constrain the
value of Qp1¢ , we consider the cases where it is changed to
3 105´ and 3 106´ (left and right panels, respectively, at the
bottom of Figure 1). To simplify this exercise, we use the two
selected circularization isochrones to demarcate the circulariza-
tion zone in the period–mass plane, and we only display data
points that have low associated errors; in addition, we only
consider data points that lie to the right of the 1 Gyr Porb,d curve
to minimize the effect of orbital decay. It is seen that the low-e
data points are concentrated too far to the left of the
circularization isochrones for Q 3 10p1

5¢ = ´ and not far
enough to the left for Q 3 10p1

6¢ = ´ , pointing to Q 10p1
6¢ »

as the preferred value.
To check the extent to which our inferences from comparing

model calculations with observational data depend on the error
tolerance criterion used in selecting the data points, we modify
the coefficient α in the condition e emax 0.1,d a< ( ) (where

1 2a = corresponds to the fiducial case shown in Figure 1).
The main results from the top panel of Figure 1 are shown in
the top right panel of Figure 2, where we retain the various

model curves (the circularization and orbital decay isochrones
as well as the immediate-post-circularization boundaries of the
sub-Jovian desert) and the reliable data points (triangles) but do
not reproduce the simulation results (dots) and the high- ed data
points (stars). For comparison, we show the corresponding
results using 1a = and1/3 in the top left and bottom left
panels, respectively, of Figure 2. It is seen that, while the
number of reliable data points decreases as α is decreased, the
qualitative behavior—and in particular the appearance of a
spatial eccentricity gradient in the vicinity of both the upper
and the lower branches of the circularization isochrones—is
unchanged. We also confirmed that Q 10p1

6¢ » remains the
preferred value when either the more stringent selection
criterion ( 1 3a = ) or the looser one ( 1a = ) is used.
Figure 3 presents the same results as Figure 1 but in the

period–eccentricity plane, with the planetary mass now being
the color-coded variable. The three panels correspond to the
same values of Qp1¢ as in Figure 1. To bring out the effect of
tidal dissipation in the planet, we only display model and data
points that lie to the right of the 1 Gyr Porb,d curve in Figure 1.
The model planets shown in the top panel exhibit a clear
transition from being dominated by comparatively high
eccentricities for P 6orb  days to acquiring low values of e
closer to the star—the signature of the “HEM + circulariza-
tion” process. The observed systems appear to have a similar
distribution and thus to be compatible with this scenario. The
model dots track the observational data points best in the top
panel: they appear to lie too far to the right in the bottom left
panel and too far to the left in the bottom right panel,
reconfirming the choice of Q 10p1

6¢ » as the best-fitting value.
A few of the data points displayed in Figure 3 have very low

( 0.01 ) values of e, yet their eccentricities are all distinct from
zero. This raises two questions: (1) why are there no genuinely
circular orbits in the data set that we exhibit; and (2) could the
very-low-e data points actually correspond to circular orbits? The
answer to the first question is that most of the e=0 entries in the
exoplanet.eu database are not listed with error values and we
therefore do not consider them. (Several e= 0 points that are
listed with errors are included in the top panel of Figure 1;
however, they all lie to the left of the 1 Gyr Porb,d curve in that
panel and have therefore been filtered out of Figure 3.) It is,
however, evident from an inspection of Figure 3 that this omission
has little effect on the properties of the spatial eccentricity gradient
—the focus of this work—since those are defined by data points
with higher values of e. The second issue is related to a well-
known intrinsic bias in the determination of eccentricity from
radial velocity data (Lucy & Sweeney 1971). This bias is a
consequence of the fact that the value of e cannot be negative,
which implies that observational uncertainties tend to yield
positive (even if small) values of e for genuinely circular orbits.
Mindful of this fact, PHMF11 and Husnoo et al. (2012) carried
out a homogeneous Bayesian analysis that explicitly addressed
this issue. Bonomo et al. (2017) extended these results using a
larger (by a factor of 3) sample of transiting planets with improved
eccentricity and mass determinations. The latter authors con-
sidered planets in the mass range M0.1, 25 J( ) and classified their
orbits as being circular (e= 0 with 1s uncertainty 0.05< ),
eccentric, or unconstrained (having e compatible with zero but
e 0.05d > or else a slightly eccentric orbit that is not strongly
supported by the Bayesian model). To check on the effect of this
bias on our conclusions, we repeat the test presented in Figure 2
using the data from this sample (and again including planet

10 It should, however, be possible for the orbits of sufficiently massive planets
to decay before they are fully circularized, which is consistent with the
comparatively high inferred frequency of eccentric orbits among transiting
planets with M M3p J> (Southworth et al. 2009).
11 The form of this criterion is motivated by the separation of eccentric orbits
in PHMF11, Husnoo et al. (2012), and Bonomo et al. (2017) into those with
e 0.1< and those with e 0.1 , and by the 1s uncertainty limit e 0.05d < that
Bonomo et al. (2017) adopted as a reliability criterion for circular (e = 0)
orbits.
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masses only up to M10 J). The result, shown in the bottom right
panel of Figure 2, demonstrates that a spatial eccentricity gradient
can also be discerned in this case in the vicinity of the upper
branches of the circularization isochrones in the Porb–Mp plane.
This data set does not, however, contain reliable eccentric orbits
for masses that lie below the break in the circularization
isochrones and thus provides no information on the possible
presence of an eccentricity gradient also in lower-mass planets.

As a final check, we carry out backward-in-time integrations for
observed systems that possess reliable eccentricity determinations.
To isolate the effect of orbital circularization, we only consider
planets for which exoplanet.eu lists an age estimate that satisfies
tage dt< (or, equivalently, P Porb orb,d> , where dt is evaluated
using the listed values of R*,M*,Mp, anda), so that orbital decay
is not important. Thus we only retain the planet-dissipation terms
in Equations (3) and(4). Each system is integrated backward from
its current location over a time interval equal to its age (see
Footnote 8), with Qp1¢ set equal to106. Figure 4 shows the
calculated evolutionary tracks in the Porb–e plane, with the three
panels corresponding to the three error tolerance limits (specified
by the parameter α) that were employed in Figure 2. The results
indicate that a significant fraction of these planets have undergone
orbital circularization and had initial orbital periods that lay
outside the close-in range. Although the total number of systems
that could be tested in this way is not large, the fact that this
outcome was not inevitable—as evidenced by the presence among
the systems considered in Figure 4 of planets that exhibit little
change in Porb over their lifetimes—strengthens the conclusion

that HEM is indeed relevant to the origin of many close-in
planets.12 It is noteworthy that a fraction of the systems that
evolve back to P 10orb > days in each of the panels (6 out of 14,
5 out of 11, and 2 out of 8 for 1a = ,1/2, and1/3, respectively)
have M M150p < Å and thus correspond to planets that lie below
the vertices of the circularization isochrone curves in the Porb–Mp

plane. This supports our tentative inference from the results
presented in Figure 1 (and in the 1a = ,1/2, and1/3 panels of
Figure 2) that HEM may be implicated in the arrival of close-in
planets that span a broad range of masses (from Jupiter to Neptune
scales).

4. Discussion

PHMF11 were the first to draw attention to the existence of
an eccentricity gradient in the period–mass plane and to

Figure 2. Dependence of the correspondence between the predicted and the observed planet distributions on the criteria used to select the data points. Each panel
presents the Porb–Mp plane with the theoretical model curves drawn in the top panel of Figure 1. The top left, top right, and bottom left panels show data points
obtained from exoplanet.eu using the error tolerance criterion e emax 0.1,d a< ( ) for 1a = ,1/2, and1/3, respectively (where 1 2a = represents the fiducial case
shown in Figure 1). Only data points that satisfy this criterion are shown (numbering 107, 82, and 63, respectively, for 1a = ,1/2, and1/3). The bottom right panel
exhibits data points that comprise reliably determined circular and eccentric orbits from the Bonomo et al. (2017) sample; they are marked, respectively, by crosses (93
systems) and triangles (16 systems). See the text for further details.

12 Jackson et al. (2008) employed similar backward-in-time integrations in an
attempt to estimate the values of Qp¢ and Q

*
¢ by matching the implied e0

distribution to the observed eccentricity distribution for a 0.2 au> . Although
their derived best-fit values, Q 3 10p

6¢ ~ ´ and Q 3 105
*
¢ ~ ´ , are close to

those obtained by other methods, this approach is subject to a number of
caveats. For example, the calculated values of e0 depend on the durations of the
backward integrations, so their inferred distribution is affected by the
(sometimes considerable) uncertainty in tage. Furthermore, the general
eccentricity distribution at a 0.2 au> may not be representative of the initial
distribution for planets that are transported by HEM to the center. Other
uncertainties associated with this approach were noted by Matsumura et al.
(2010). Such integrations are, however, useful for demonstrating that the data
are consistent with the “HEM + circularization” scenario for a broad choice of
values for Qp¢ and Q

*
¢ (Jackson et al. 2008; Matsumura et al. 2010).

6

The Astronomical Journal, 154:192 (10pp), 2017 November Giacalone, Matsakos, & Königl



consider its implications. They pointed out that its orientation
agreed with that of a circularization isochrone based on tidal
dissipation in the planet, for which a R M Mcir p

5
p *t µ ( ) . (By

contrast, a R M Mcir
5

p* *t µ ( ) if dissipation in the star is
dominant.) They further demonstrated that the location of the
transition from e 0.1> to e 0.1< roughly corresponds to a
1 Gyr isochrone characterized by Q 10p

6¢ = (see also Husnoo
et al. 2012). These findings were confirmed in the more
extensive recent study by Bonomo et al. (2017). Our work
extends these results by confronting the data with explicit
predictions of the HEM model. This approach has made it
possible to constrain the value of the planetary tidal quality
factor in the circularization zone (Q 10p

6¢ » for P 4orb  days).

Although a similar value is often adopted in the literature,
based on theoretical calculations and solar-system observations
(e.g., Dobbs-Dixon et al. 2004; Fabrycky et al. 2007), the
constraints derived directly from the exoplanet data have been
much less restrictive. Specifically, by requiring that the orbits
of planets with e 0» circularize on timescales shorter than
their ages and that those with finite eccentricities do not, one
can obtain upper and lower limits, respectively, on Qp¢. The
range of values inferred in this way spans several orders of
magnitude ( 10 10 ;5 9~ - e.g., Matsumura et al. 2008; Bonomo
et al. 2017). By comparison, we were able to estimate a
preferred characteristic value for Qp¢ in the circularization
region to within a factor of three.

Figure 3. Predicted (dots) and observed (triangles) planet distributions in the Porb–e plane for the same three values of the model parameter Qp1¢ and using the same
error tolerance criterion as in Figure 1. In this case the color-coded variable is Mp. Only the 49 data points employed in the bottom panels of Figure 1—and,
correspondingly, only the model points that lie to the right of the 1 Gyr orbital decay isochrone in that figure—are displayed. Observational selection effects that could
affect the model planets’ detectability are not taken into account.
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Although the database that we employed is not as reliable as
the one assembled, for example, by Bonomo et al. (2017) using a
homogeneous statistical analysis, we have considered lower
masses (down to M M0.03p J» ) than those in previous studies
of this topic. This has led us to a tentative conclusion that the
HEM process may also play a role in the formation of sub-
Jovian-mass planets (down to Neptune size). The shape of the
circularization isochrones in the period–mass plane resembles
that of a bird’s beak, and the presence of an eccentricity gradient
for planets with M M150p < Å would establish the reality of the
lower portion of that beak. The potential added significance of
such a determination is that the HEM scenario implies the
existence in the Porb–Mp plane of a similar “bird’s beak”
structure at lower values of Porb—the boundary of the sub-
Jovian desert (see top panel in Figure 1 and MK16). Given that
the shape and origin of the lower boundary of the desert are still
being debated (e.g., Mazeh et al. 2016), the presence of an
eccentricity gradient in association with the lower branches
of the circularization isochrones would support the HEM
interpretation of the sub-Jovian desert even as it broadens the
range of planetary masses in which this mechanism is found to
operate. Clearly, more data are needed to validate the existence
of this gradient: future space missions such as TESS (Ricker
et al. 2014) and PLATO (Rauer et al. 2014) hold promise in this
regard.

Despite its apparent success in explaining a variety of
observational findings, the extent of the contribution of the
HEM mechanism to the formation of close-in giant planets is still
being investigated. In one test of this scenario, Dawson et al.
(2015) looked for observational evidence for highly eccentric
Jupiter-mass planets, which were predicted to exist if hot Jupiters
originate outside the ice line and their HEM is induced by a
distant (stellar) companion (Socrates et al. 2012). Dawson et al.
(2015) did not find such evidence, but they suggested that this
does not rule out the possibility that hot Jupiters originate interior
to the ice line and that their orbits are perturbed by a planetary
companion. In a subsequent study, Schlaufman & Winn (2016)
inferred that the probability of a giant planet having a Jupiter-mass
companion capable of inducing HEM does not depend on
whether the planet lies within the hot-Jupiter orbital range or on
the location of the companion with respect to the ice line. These
results do not support HEM models in which close-in giant
planets originate beyond the ice line, but they are again
compatible with the possibility (which Schlaufman & Winn 2016
also recognized) that such planets can travel at least part of the
distance from their formation sites by means other than HEM
(e.g., classical disk migration or a secular dynamical interaction

with a companion).13 Under these circumstances, and given that
not all systems that harbor a close-in giant planet show evidence
for an outer planetary companion (e.g., Bryan et al. 2016), it
is natural to expect that some fraction of the observed giant
planets—including hot Jupiters—have not experienced HEM.
There have already been attempts to quantify this fraction based
on the difference in the orbital characteristics of the two planet
arrival modes, and it appears that it could be appreciable (e.g.,
Petrovich & Tremaine 2016; Nelson et al. 2017). It is also worth
keeping in mind that a large number of giant planets likely form in
the protoplanetary disk and reach the star through classical disk
migration (e.g., Thommes et al. 2008). Some of these planets may
have been stranded near the host star for up to ∼1Gyr before
being tidally ingested and—notwithstanding the fact that their
contribution to the observed number count of planets is small—
could have left a lasting imprint on the obliquity and metallicity
properties of their hosts (Matsakos & Königl 2015; KGM17).

5. Conclusion

We tested a key prediction of the HEM scenario for the origin
of hot Jupiters and other close-in planets. In this interpretation,
planets arrive in the vicinity of the host star on high-eccentricity
orbits that become circularized through tidal interaction with the
star if they reach orbital periods that are less than Porb,cir
(Equation (5)). This picture implies that a spatial eccentricity
gradient should be present in the period–mass phase space near
the locus of circularization radii that correspond to typical system
ages. The existence of such a gradient for close-in giant planets
had been first pointed out by PHMF11 (see also Husnoo
et al. 2012), and this finding was recently confirmed by Bonomo
et al. (2017). Our treatment is distinct from previous work in that
it explicitly tests the HEM scenario by comparing the model
predictions (obtained by integrating the evolution equations using
observationally or theoretically constrained initial conditions) with
the data. This approach has enabled us to extract valuable
information about the circularization process. It was already
deduced by PHMF11 (and, through alternative methods, by other
workers) that this process is dominated by tidal dissipation in the
planet. We verified that the effect of orbital decay (dominated by
tidal dissipation in the star) for planets of mass M M2p J is not
important in the circularization zone (which roughly spans the
Porb range ∼4–6 days) and inferred that the characteristic value of
the planetary tidal quality factor Qp¢ in this region is 106~ . We

Figure 4. Backward evolution trajectories in the Porb–e plane calculated usingQ 10p1
6¢ = and neglecting tidal dissipation in the star. The three panels correspond to the

three error tolerance limits employed in Figure 2: 1a = ,1/2, and1/3, respectively, from left to right. The displayed systems comprise close-in planets for which a
reliable value of e as well as the values of Porb, Mp, Rp, e, M* and tage are available on exoplanet.eu, and which satisfy P Porb orb,d> (Equation (6)) so that the effect of
orbital decay can be neglected. Each system was integrated over a time interval t tageD = . As expected, the number of integrable eccentric systems decreases as the
constraint on ed becomes more stringent (from 26 to 22 to 17, going from the leftmost to the rightmost panel).

13 As was noted in Section 2, the choice of initial conditions for our model is
consistent with this emerging understanding of how the HEM mechanism
operates in real systems.
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reached this conclusion through a qualitative comparison between
the model results and the data in the period–mass and period–
eccentricity planes. Although we checked that these results are not
sensitive to the details of the error tolerance criteria used in
selecting the data points, we did not perform a formal statistical
test since the number of systems that can be used to demonstrate
the existence of the gradient is not yet large enough to justify
carrying out such an analysis over the three-dimensional (Porb,
Mp, e) parameter space. However, we have found that our
procedure is reliable enough to pin down the value of Qp¢ in the
circularization zone to within a factor of three, which can be
compared with the 10 105 9~ – range obtained previously through
an application of generic constraints. We stress, however, that the
inferred value of Qp¢ pertains only to the narrow range of orbital
periods where the transition from mostly eccentric to mostly
circular orbits occurs in the model; thus, we cannot reliably test
the possible spatial variation of Qp¢. Furthermore, this parameter
only provides a very basic description of tidal dissipation, and our
procedure does not test realistic models of this process.

Planets that reach the Roche limit aR (Equation (2)) become
tidally disrupted: this limit thus provides a natural edge to the
observed distribution (corresponding to the boundary of the sub-
Jovian desert). We demonstrated that this edge generally lies

interior to the predicted location of the circularization zone,
consistent with the data. We noted the possible observational
indication of an eccentricity gradient for sub-Jovian-mass
planets: if confirmed by additional data, such a gradient would
attest to the relevance of the HEM mechanism also to non-giant
close-in planets and would support the interpretation of the lower
boundary of the desert in terms of this mechanism.
Giant planets that cross the Roche limit—either on their

initial high-eccentricity trajectories or at a later stage (after their
orbits are circularized) due to orbital decay—can be expected
to lose their gaseous envelopes and be converted into remnant
cores. In KGM17 we extend the calculations presented in this
paper by continuing to follow the evolution of these cores, and
argue that such remnants are natural candidates for dynamically
isolated hot Earths. If this interpretation is correct, it will
provide an additional—and independent—argument in favor of
the “HEM + circularization” scenario.

We acknowledge fruitful discussions with Dan Fabrycky and
thank him and the referee for helpful suggestions. This work
was supported in part by NASA ATP grant NNX13AH56G
and by a University of Chicago College Research Fellows Fund
award to S.G.

Figure 5. Planetary radius and mass distributions obtained from exoplanet.eu using the search criteria R R9, 20p Î Å[ ] and M M0.3, 10p JÎ [ ] for confirmed planets.
The search returned 323 systems.

Figure 6. Age distributions from exoplanet.eu for large (left) and small (right) planets with orbital periods in the range [2.5, 7] days. The selection criteria for the large
planets were the same as those listed in Figure 5, and the search returned 148 planets. The selection criteria for the small planets were R R3, 12p Î Å[ ] and
M M0.03, 0.45p JÎ [ ] for confirmed planets, and the search returned 31 systems with physically reasonable age estimates.

9

The Astronomical Journal, 154:192 (10pp), 2017 November Giacalone, Matsakos, & Königl



Appendix
Empirical Distributions from the
Extrasolar Planets Encyclopedia

As in MK16, we follow the approach of Weiss et al. (2013)
and divide the planet population into two sets, “small” and
“large,” with R R12p = Å and M M150p = Å serving as the
rough dividing values of radius and mass, respectively. For the
smaller planets we adopt the M Rp p( ) relation given by
Equation (1), whereas for the larger ones we employ the
empirical distributions shown in Figure 5 (which are sampled
independently). It is seen that the variation in the value of Rp

for this set is much smaller than that in Mp, justifying the
adoption of the ansatz R constantp = for the analytic
approximations in Section 2.

We maintained the separation into “small” and “large”
planets in constructing the age distribution. The left panel of
Figure 6 shows the results for the larger planets. It is seen that
the bulk of the systems have tage in the range ∼1–5 Gyr: this is
considerably broader than the distribution used in MK16,
which was biased toward younger systems. We employed the
values that delineate this range (1 and 5 Gyr) in plotting the
isochrone curves in Figures 1 and 2. The age distribution for
the smaller planets is shown in the right panel of Figure 6.
Although the number of systems returned by the search in this
case was small, there is a strong indication that the observed
distribution is qualitatively different from the one in the left
panel, justifying the separate catalog queries that we made.

The above empirical distributions were obtained without
filtering on the basis of the listed errors. While these are
typically not large for the planets’ radii and masses, they can be
significant for the systems’ ages, with a factor of2 uncertainty
in the value of tage being fairly common.
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